LoadingLoading
  • Browse By Category

  • Products
  • Services
  • Support
  • Corporate
  • Back
  • Products

  • Antibodies
  • Instruments
  • Research Kits
  • Proteins & Enzymes
  • Peptides
  • COVID-19 Assays
  • Back
  • Antibodies

  • Primary Antibodies
  • Secondary Antibodies
  • Tag Antibodies
  • Antibody Panel Packs
  • Back
  • Primary Antibodies

  • DNA Methylation Antibodies
  • Cell Structure & Function Antibodies
  • RNA Processing & Modification Antibodies
  • Chromatin & Transcription Antibodies
  • Other Primary Antibodies
  • Histone Modification Antibodies
  • Signal Transduction Antibodies
  • Metabolism Antibodies
  • Immunology & Inflammation Antibodies
  • Back
  • Cell Structure & Function Antibodies

  • DNA Damage & Repair Antibodies
  • Apoptosis & Cell Death Antibodies
  • Cell Cycle Antibodies
  • Cellular Structure Antibodies
  • Trafficking Antibodies
  • Back
  • Chromatin & Transcription Antibodies

  • DNA Replication & Transcription Antibodies
  • Chromatin Remodeling Antibodies
  • Cell Growth Antibodies
  • Development & Differentiation Antibodies
  • Back
  • Histone Modification Antibodies

  • Histone Methylation (Lysine) Antibodies
  • Histone Acetylation Antibodies
  • Histone Phosphorylation Antibodies
  • Ubiquitination & SUMOylation Antibodies
  • Histone Methylation (Arginine) Antibodies
  • Other Histone Methylation Antibodies
  • Other Histone Acetylation Antibodies
  • Histone Deacetylation Antibodies
  • Other Histone Antibodies
  • Back
  • Signal Transduction Antibodies

  • Cell Surface Receptor & Kinase Antibodies
  • Intracellular Kinase & Adaptor Protein Antibodies
  • Phosphatase Antibodies
  • Secreted Growth Factor Antibodies
  • Back
  • Metabolism Antibodies

  • Glucose Metabolism Antibodies
  • Lipid Metabolism Antibodies
  • Protein Metabolism Antibodies
  • Nucleotide Metabolism Antibodies
  • Back
  • Immunology & Inflammation Antibodies

  • Cell Marker & Receptor Antibodies
  • Cytokine Antibodies
  • Other Immunology Antibodies
  • Back
  • Antibody Panel Packs

  • Histone Modification
  • DNA Methylation
  • Back
  • Instruments

  • Sonication Devices
  • Magnets & Sample Mixers
  • Back
  • Research Kits

  • DNA Methylation
  • Chromatin & Transcription
  • Histone Methylation
  • Acetylation & Deacetylation
  • Gene Editing & Silencing
  • Sample Preparation
  • DNA Damage & Repair
  • Next Generation Sequencing
  • RNA Methylation
  • Other Histone Modifications
  • Back
  • DNA Methylation

  • DNA Bisulfite Conversion
  • DNA Methylation Quantification
  • DNA Methyltransferase & Demethylase Assays
  • Methylated DNA Immunoprecipitation
  • Methylated DNA Amplification
  • Back
  • Chromatin & Transcription

  • General Chromatin Immunoprecipitation
  • In Vitro Protein-DNA Interaction
  • Methyl-Histone Chromatin IP
  • Acetyl-Histone Chromatin IP
  • Methyl-DNA Binding Protein ChIP
  • Chromatin Analysis
  • Back
  • Histone Methylation

  • Histone Methyltransferase Assay
  • Histone Methylation Quantification
  • Histone Demethylase Assay
  • Back
  • Acetylation & Deacetylation

  • Histone Acetyltransferase (HAT) Assay
  • Histone Deacetylase (HDAC) Assay
  • Histone Acetylation Quantification
  • Back
  • Sample Preparation

  • DNA Preparation
  • Protein Preparation
  • Chromatin Preparation
  • RNA Preparation
  • Back
  • Other Histone Modifications

  • Sumoylation
  • Histone Phosphorylation Assay
  • Histone Citrullination
  • Back
  • Proteins & Enzymes

  • DNA Methylation/Demethylation Proteins
  • Methylated DNA Binding Proteins
  • Unmodified Histone Proteins
  • Chromatin Binding/Transcription Proteins
  • ADP Ribose Proteins
  • DNA Damage & Repair Proteins
  • Modified Histone Proteins
  • Back
  • DNA Methylation/Demethylation Proteins

  • DNA Demethylation Proteins
  • DNA Methylation Proteins
  • Back
  • Modified Histone Proteins

  • Histone Methylation Proteins
  • Histone Demethylation Proteins
  • Histone Acetylation Proteins
  • Histone Deacetylation Proteins
  • Histone Phosphorylation Proteins
  • Histone Sumoylation Proteins
  • Back
  • Peptides

  • Histone Methylation Peptides
  • Histone Acetylation Peptides
  • Histone Phosphorylation Peptides
  • Back
  • COVID-19 Assays

  • COVID-19 Kits
  • COVID-19 Antibodies
  • COVID-19 Proteins
  • Back
  • Services

  • DNA-based NGS Services
  • Chromatin-based NGS Services
  • qPCR-based Services
  • ELISA-based Services
  • Back
  • DNA-based NGS Services

  • Reduced Representation Bisulfite Sequencing (RRBS)
  • Whole Genome Bisulfite Sequencing (WGBS)
  • Targeted Bisulfite Sequencing
  • Back
  • Chromatin-based NGS Services

  • ChIP Sequencing (Histone Modifications)
  • Back
  • qPCR-based Services

  • Methylation-Specific qPCR (MSP)
  • Back
  • ELISA-based Services

  • Global DNA 5-mC Quantification
  • Global DNA 5-hmC Quantification
  • Global RNA 5-mC Quantification
  • Global RNA m6A Quantification
  • Histone Modification Quantification
  • Back
  • Support

  • Technical Support
  • Quality Assurance
  • Resources
  • Back
  • Technical Support

  • Submit Support Ticket
  • Back
  • Quality Assurance

  • Epigentek Gurantee
  • Risk-Free Testing: Pioneer Program
  • Product Review Program
  • Back
  • Resources

  • Epigenetics Newsletter
  • Intro to Epigenetics
  • What is Epigenetics?
  • Back
  • Corporate

  • Company Information
  • Procurement
  • Communication
  • Back
  • Company Information

  • About Epigentek
  • Press Release
  • Career Opportunities
  • Back
  • Procurement

  • Ordering Information
  • New Lab Startup Program
  • Distributors & Resellers
  • Back
  • Communication

  • Contact Us
  • Customer Feedback Survey
  • Events Calendar
Epigentek Home
Cart (0)
Track
Account
  • Products

    Antibodies

    • DNA Methylation
    • Histone Modification
      • Histone Methylation (Lysine)
      • Histone Methylation (Arginine)
      • Other Histone Methylation
      • Histone Acetylation
      • Histone Deacetylation
      • Other Histone Acetylation
      • Histone Phosphorylation
      • Ubiquitination & SUMOylation
      • Other Histone Antibodies
    • RNA Processing & Modification
    • Chromatin & Transcription
      • Chromatin Remodeling
      • DNA Replication & Transcription
      • Cell Growth
      • Development & Differentiation
    • Cell Structure & Function
      • Cell Cycle
      • DNA Damage & Repair
      • Apoptosis & Cell Death
      • Cellular Structure
      • Trafficking
    • Signal Transduction
      • Cell Surface Receptor & Kinase
      • Intracellular Kinase & Adaptor Protein
      • Phosphatase
      • Secreted Growth Factor
    • Metabolism
      • Glucose Metabolism
      • Lipid Metabolism
      • Protein Metabolism
      • Nucleotide Metabolism
    • Immunology & Inflammation
      • Cell Marker & Receptor
      • Cytokine
      • Other Immunology Antibodies
    • Other Primary Antibodies

    • Secondary Antibodies
    • Tag Antibodies
    • Antibody Panel Packs
      • Histone Modification Panel
      • DNA Methylation Panel

    Research Kits

    • Sample Preparation
      • DNA Preparation
      • RNA Preparation
      • Protein Preparation
      • Chromatin Preparation
    • Next Generation Sequencing
    • DNA Methylation
      • DNA Bisulfite Conversion
      • DNA Methylation Quantification
      • Methylated DNA Immunoprecipitation (meDIP)
      • DNMT & DNA Demethylase Assay
      • Methylated DNA Amplification
    • RNA Methylation
    • Chromatin & Transcription
      • Chromatin Immunoprecipitation
      • ChIP-seq
      • CUT&RUN
      • In Vitro Protein-DNA Interaction
      • Chromatin Accessibility
    • Histone Methylation
      • Histone Methylation Quantification
      • Histone Methytransferase Assay
      • Histone Demethylase Assay
    • Histone Acetylation
      • Histone Acetylation Quantification
      • Histone Acetylase (HAT) Assay
      • Histone Deacetylase (HDAC) Assay
    • Other Histone Modifications
      • Histone Citrullination
      • Histone Phosphorylation
      • SUMOylation
    • DNA Damage & Repair
    • Gene Editing & Silencing

    Proteins & Enzymes

    • DNA Methylation
      • DNA Methylation
      • DNA Demethylation
    • Modified Histones
      • Histone Methylation
      • Histone Demethylation
      • Histone Acetylation
      • Histone Deacetylation
      • Histone Phosphorylation
      • Histone SUMOylation
    • Unmodified Histones
    • Methylated DNA Binding
    • ADP Ribose
    • Chromatin Binding/Transcription
    • DNA Damage & Repair

    Peptides

    • Histone Methylation
    • Histone Acetylation/Deacetylation
    • Histone Phosphorylation

    Instruments

    • Sonication Devices
    • Magnets & Sample Mixers

    COVID-19 Assays

    • COVID-19 Kits
    • COVID-19 Antibodies
    • COVID-19 Proteins
  • Services

    DNA-based NGS Services

    • Reduced Representation Bisulfite Sequencing (RRBS)
    • Whole Genome Bisulfite Sequencing (WGBS)
    • Targeted Bisulfite Sequencing

    Chromatin-based NGS Services

    • ChIP Sequencing (Histone Modifications)

    qPCR-based Services

    • Methylation-Specific qPCR (MSP)

    ELISA-based Services

    • Global DNA 5-mC Quantification
    • Global DNA 5-hmC Quantification
    • Global RNA 5-mC Quantification
    • Global RNA m6A Quantification
    • Histone Modification Quantification
  • Support

    Technical Support

    • Submit Support Ticket
    • Download Datasheet

    Quality Assurance

    • EpigenTek Guarantee
    • Risk-Free Testing: Pioneer Program
    • Product Review Program

    Resources

    • Epigenetics Newsletter
    • Intro to Epigenetics
    • What Is Epigenetics?
  • Corporate

    Company Information

    • About EpigenTek
    • Corporate Sustainability
    • Press Releases
    • Career Opportunities

    Procurement

    • Ordering Information
    • New Lab Startup Program
    • Distributors & Resellers

    Communication

    • Contact Us
    • Customer Feedback Survey
    • Events Calendar
 
EpiGentek Guarantee
   Home  »  Epigenetic Resources  »  STAT5 and BATF Promote Chromatin Accessibility in Helper T Cells 
    Quote Lookup

STAT5 and BATF Promote Chromatin Accessibility in Helper T Cells

Share:
The human immune system is made up of a complex set of biological processes and mechanisms that help our bodies fight against pathogens. When a foreign stimulus enters our body and slips past our innate immune cells, the immune system sends lymphocytes as a more advanced approach to attack.

There are 2 types of lymphocytes: B cells and T cells -- both of which mark the pathogen and create a tailored response to destroy it. B cells achieve this by producing antibodies specific to the pathogen to neutralize the threat, whereas cytotoxic T cells produce powerful enzymes that induce cell death.

Perhaps the most important part of the lymphocyte response belongs to the helper T cell (Th). Th cells help activate B cells and T cells by creating small proteins called cytokines, providing a blueprint for the lymphocytes to follow.

In order for Th cells to be effective in the immune response, they must be differentiated. Th cell differentiation is a lineage-based process that can be reversed and will vary depending on the immune response needed. It begins when cytokine signals and transcription factors open up the chromatin, allowing a group of transcription proteins called STAT to dictate which type of helper T cell it becomes.

In a study out of Indiana University, a team of researchers examined Th9 cells—a particular subset of Th cells constant in the immune response of humans and mice. These cells demonstrate antitumor activity, and help promote immunity to certain parasites and allergies.

The team led by Drs. Yongyao Fu and Mark Kaplan wanted to determine the factors that allow Th9 cells to produce a cytokine called interleukin-9 (IL-9), which aids cell proliferation and prevents apoptosis. Specifically, they focused on transcription factors STAT5 and BATF, and how they affect chromatin accessibility and gene expression, with hopes of finding potential therapies for IL-9-dependent immune response.
FACS analysis of IL-9 and pSTAT5 expression in Th9 cells
D.FACS analysis of IL-9 and pSTAT5 expression in Th9 cells transduced with control (Scr), STAT5a-specific, or STAT5b-specific shRNA. E. Chromatin accessibility analysis of Il9 gene locus in Th9 cells transduced with Scr-shRNA or STAT5a-shRNA retrovirus. F, G. H3K27me3 modification and BATF binding at the Il9 gene locus in Th9 cells transduced with Scr-shRNA or STAT5a-shRNA retrovirus on day 5.


The researchers performed a ChIP-seq on Th9 cells and identified BATF as a required factor in cell development and IL-9 production, but they discovered that BATF could only access the IL9 gene in a euchromatin state.

To determine the role STAT5 plays in accessibility of the IL9 gene, the researchers isolated Th9 cells from human peripheral blood mononuclear cells. In total, they collected between 0.4 million and 1 million Th9 cells. They added a STAT5 inhibitor on day 1 and monitored the cells for 5 days. On day 5, the team used the EpiQuik Chromatin Accessibility Kit to determine the chromatin state.

Then, they converted different Th9 cell cultures with short hairpin RNA (shRNA) that were specific for genes Stat5a and Stat5b. In these cultures, they found that both STAT5 activation and IL9 production had drastically decreased, implying that STAT5 is required to allow access to the IL9 locus.

Kinetic analysis of IL9 gene accessibility
D, E. Kinetic analysis of IL9 gene accessibility from naive human CD4+ cells to D5 Th9 culture. F. IL-9 expression in Th9 cells transduced with Scr-shRNA or STAT5b-shRNA lentivirus, cells were analyzed on day 5. G. Th9 cells treated with DMSO or STAT5 inhibitor on day 1, IL-9 and pSTAT5 were analyzed on day 5.


Next, they wanted to find out the cooperative relationship between STAT5 and BATF. Using the same experimental design as above, the researchers noticed a gradual increase in STAT5 presence through day four. After the STAT5 inhibitor was added, both the IL9 locus accessibility and the BATF binding dramatically decreased. Upon further examination, they found that STAT5 and BATF shared the same biding region on 289 genes, indicating their cooperative function in regulating IL-9 expression.

There are many moving parts to our immune system. When the body senses a foreign pathogen, it sets off a cascade of regulatory processes to ensure that the pathogen is met and terminated early to prevent further infection or disease development. The findings in this study highlight the importance of helper T cell differentiation and how it could be a potential therapeutic target for immune health and disease prevention.

Source
Fu Y, et al. (2020). TGF-β1 increases viral burden and promotes HIV-1 latency in primary differentiated human bronchial epithelial cells. Nat Commun, 11(1), 12552.

Get News Bulletin Updates

Enjoyed what you read here today? Sign up below and receive updates about new articles, bench tips and protocols so you can stay up-to-date!


Epigenetic Resources
  • Antibodies
  • DNA Methylation
  • RNA Methylation
  • Chromatin Remodeling
  • Histone Modifications
  • Gene Editing
  • Miscellaneous
BOGO-Conjugate Abs
Recent Resource Bulletins
  • Therapeutic Potential of m6A RNA Methylation
  • How CUT&RUN Helps Improve Methylated RNA Immunoprecipitation
  • Accessing Histone PTMs: Insights Into the Methods Used for Their Assessment
Featured Areas of Study
DNA, Protein, & Chromatin Preparation
DNA Methylation & Demethylation Analysis
Chromatin Immunoprecipitation
Histone Methylation & Demethylation
Histone Acetylation & Deacetylation
Gene Expression & Silencing
DNA Damage & Repair
Histone Phosphorylation
SUMOylation
Next-Generation Sequencing
Products & Services
Ordering Information & Return Policy
Epigenetic Services
Discounts & Promotions
Rewards Program
Product Reviews
New Lab Startup Program
Risk-Free Testing: Pioneer Program

Support
Download Datasheets
Epigentek Guarantee
Technical Support
Corporate
About Epigentek
Press Releases
Product Newsletter
Events Calendar
Distributors & Resellers
EpigenCare
Career Opportunities
Contact Us

Stay Informed



Terms & Conditions | Privacy Policy | Site Map
Copyright © 2019 EpiGentek Group Inc. All rights reserved.
  • Stay Informed:
Terms & Conditions | Privacy Policy Copyright © EpiGentek