LoadingLoading
  • Browse By Category

  • Products
  • Services
  • Support
  • Corporate
  • Back
  • Products

  • Antibodies
  • Instruments
  • Research Kits
  • Proteins & Enzymes
  • Peptides
  • COVID-19 Assays
  • Back
  • Antibodies

  • Primary Antibodies
  • Secondary Antibodies
  • Tag Antibodies
  • Antibody Panel Packs
  • Back
  • Primary Antibodies

  • DNA Methylation Antibodies
  • Cell Structure & Function Antibodies
  • RNA Processing & Modification Antibodies
  • Chromatin & Transcription Antibodies
  • Other Primary Antibodies
  • Histone Modification Antibodies
  • Signal Transduction Antibodies
  • Metabolism Antibodies
  • Immunology & Inflammation Antibodies
  • Back
  • Cell Structure & Function Antibodies

  • DNA Damage & Repair Antibodies
  • Apoptosis & Cell Death Antibodies
  • Cell Cycle Antibodies
  • Cellular Structure Antibodies
  • Trafficking Antibodies
  • Back
  • Chromatin & Transcription Antibodies

  • DNA Replication & Transcription Antibodies
  • Chromatin Remodeling Antibodies
  • Cell Growth Antibodies
  • Development & Differentiation Antibodies
  • Back
  • Histone Modification Antibodies

  • Histone Methylation (Lysine) Antibodies
  • Histone Acetylation Antibodies
  • Histone Phosphorylation Antibodies
  • Ubiquitination & SUMOylation Antibodies
  • Histone Methylation (Arginine) Antibodies
  • Other Histone Methylation Antibodies
  • Other Histone Acetylation Antibodies
  • Histone Deacetylation Antibodies
  • Other Histone Antibodies
  • Back
  • Signal Transduction Antibodies

  • Cell Surface Receptor & Kinase Antibodies
  • Intracellular Kinase & Adaptor Protein Antibodies
  • Phosphatase Antibodies
  • Secreted Growth Factor Antibodies
  • Back
  • Metabolism Antibodies

  • Glucose Metabolism Antibodies
  • Lipid Metabolism Antibodies
  • Protein Metabolism Antibodies
  • Nucleotide Metabolism Antibodies
  • Back
  • Immunology & Inflammation Antibodies

  • Cell Marker & Receptor Antibodies
  • Cytokine Antibodies
  • Other Immunology Antibodies
  • Back
  • Antibody Panel Packs

  • Histone Modification
  • DNA Methylation
  • Back
  • Instruments

  • Sonication Devices
  • Magnets & Sample Mixers
  • Back
  • Research Kits

  • DNA Methylation
  • Chromatin & Transcription
  • Histone Methylation
  • Acetylation & Deacetylation
  • Gene Editing & Silencing
  • Sample Preparation
  • DNA Damage & Repair
  • Next Generation Sequencing
  • RNA Methylation
  • Other Histone Modifications
  • Back
  • DNA Methylation

  • DNA Bisulfite Conversion
  • DNA Methylation Quantification
  • DNA Methyltransferase & Demethylase Assays
  • Methylated DNA Immunoprecipitation
  • Methylated DNA Amplification
  • Back
  • Chromatin & Transcription

  • General Chromatin Immunoprecipitation
  • In Vitro Protein-DNA Interaction
  • Methyl-Histone Chromatin IP
  • Acetyl-Histone Chromatin IP
  • Methyl-DNA Binding Protein ChIP
  • Chromatin Analysis
  • Back
  • Histone Methylation

  • Histone Methyltransferase Assay
  • Histone Methylation Quantification
  • Histone Demethylase Assay
  • Back
  • Acetylation & Deacetylation

  • Histone Acetyltransferase (HAT) Assay
  • Histone Deacetylase (HDAC) Assay
  • Histone Acetylation Quantification
  • Back
  • Sample Preparation

  • DNA Preparation
  • Protein Preparation
  • Chromatin Preparation
  • RNA Preparation
  • Back
  • Other Histone Modifications

  • Sumoylation
  • Histone Phosphorylation Assay
  • Histone Citrullination
  • Back
  • Proteins & Enzymes

  • DNA Methylation/Demethylation Proteins
  • Methylated DNA Binding Proteins
  • Unmodified Histone Proteins
  • Chromatin Binding/Transcription Proteins
  • ADP Ribose Proteins
  • DNA Damage & Repair Proteins
  • Modified Histone Proteins
  • Back
  • DNA Methylation/Demethylation Proteins

  • DNA Demethylation Proteins
  • DNA Methylation Proteins
  • Back
  • Modified Histone Proteins

  • Histone Methylation Proteins
  • Histone Demethylation Proteins
  • Histone Acetylation Proteins
  • Histone Deacetylation Proteins
  • Histone Phosphorylation Proteins
  • Histone Sumoylation Proteins
  • Back
  • Peptides

  • Histone Methylation Peptides
  • Histone Acetylation Peptides
  • Histone Phosphorylation Peptides
  • Back
  • COVID-19 Assays

  • COVID-19 Kits
  • COVID-19 Antibodies
  • COVID-19 Proteins
  • Back
  • Services

  • DNA-based NGS Services
  • Chromatin-based NGS Services
  • qPCR-based Services
  • ELISA-based Services
  • Back
  • DNA-based NGS Services

  • Reduced Representation Bisulfite Sequencing (RRBS)
  • Whole Genome Bisulfite Sequencing (WGBS)
  • Targeted Bisulfite Sequencing
  • Back
  • Chromatin-based NGS Services

  • ChIP Sequencing (Histone Modifications)
  • Back
  • qPCR-based Services

  • Methylation-Specific qPCR (MSP)
  • Back
  • ELISA-based Services

  • Global DNA 5-mC Quantification
  • Global DNA 5-hmC Quantification
  • Global RNA 5-mC Quantification
  • Global RNA m6A Quantification
  • Histone Modification Quantification
  • Back
  • Support

  • Technical Support
  • Quality Assurance
  • Resources
  • Back
  • Technical Support

  • Submit Support Ticket
  • Back
  • Quality Assurance

  • Epigentek Gurantee
  • Risk-Free Testing: Pioneer Program
  • Product Review Program
  • Back
  • Resources

  • Epigenetics Newsletter
  • Intro to Epigenetics
  • What is Epigenetics?
  • Back
  • Corporate

  • Company Information
  • Procurement
  • Communication
  • Back
  • Company Information

  • About Epigentek
  • Press Release
  • Career Opportunities
  • Back
  • Procurement

  • Ordering Information
  • New Lab Startup Program
  • Distributors & Resellers
  • Back
  • Communication

  • Contact Us
  • Customer Feedback Survey
  • Events Calendar
Epigentek Home
Cart (0)
Track
Account
  • Products

    Antibodies

    • DNA Methylation
    • Histone Modification
      • Histone Methylation (Lysine)
      • Histone Methylation (Arginine)
      • Other Histone Methylation
      • Histone Acetylation
      • Histone Deacetylation
      • Other Histone Acetylation
      • Histone Phosphorylation
      • Ubiquitination & SUMOylation
      • Other Histone Antibodies
    • RNA Processing & Modification
    • Chromatin & Transcription
      • Chromatin Remodeling
      • DNA Replication & Transcription
      • Cell Growth
      • Development & Differentiation
    • Cell Structure & Function
      • Cell Cycle
      • DNA Damage & Repair
      • Apoptosis & Cell Death
      • Cellular Structure
      • Trafficking
    • Signal Transduction
      • Cell Surface Receptor & Kinase
      • Intracellular Kinase & Adaptor Protein
      • Phosphatase
      • Secreted Growth Factor
    • Metabolism
      • Glucose Metabolism
      • Lipid Metabolism
      • Protein Metabolism
      • Nucleotide Metabolism
    • Immunology & Inflammation
      • Cell Marker & Receptor
      • Cytokine
      • Other Immunology Antibodies
    • Other Primary Antibodies

    • Secondary Antibodies
    • Tag Antibodies
    • Antibody Panel Packs
      • Histone Modification Panel
      • DNA Methylation Panel

    Research Kits

    • Sample Preparation
      • DNA Preparation
      • RNA Preparation
      • Protein Preparation
      • Chromatin Preparation
    • Next Generation Sequencing
    • DNA Methylation
      • DNA Bisulfite Conversion
      • DNA Methylation Quantification
      • Methylated DNA Immunoprecipitation (meDIP)
      • DNMT & DNA Demethylase Assay
      • Methylated DNA Amplification
    • RNA Methylation
    • Chromatin & Transcription
      • Chromatin Immunoprecipitation
      • ChIP-seq
      • CUT&RUN
      • In Vitro Protein-DNA Interaction
      • Chromatin Accessibility
    • Histone Methylation
      • Histone Methylation Quantification
      • Histone Methytransferase Assay
      • Histone Demethylase Assay
    • Histone Acetylation
      • Histone Acetylation Quantification
      • Histone Acetylase (HAT) Assay
      • Histone Deacetylase (HDAC) Assay
    • Other Histone Modifications
      • Histone Citrullination
      • Histone Phosphorylation
      • SUMOylation
    • DNA Damage & Repair
    • Gene Editing & Silencing

    Proteins & Enzymes

    • DNA Methylation
      • DNA Methylation
      • DNA Demethylation
    • Modified Histones
      • Histone Methylation
      • Histone Demethylation
      • Histone Acetylation
      • Histone Deacetylation
      • Histone Phosphorylation
      • Histone SUMOylation
    • Unmodified Histones
    • Methylated DNA Binding
    • ADP Ribose
    • Chromatin Binding/Transcription
    • DNA Damage & Repair

    Peptides

    • Histone Methylation
    • Histone Acetylation/Deacetylation
    • Histone Phosphorylation

    Instruments

    • Sonication Devices
    • Magnets & Sample Mixers

    COVID-19 Assays

    • COVID-19 Kits
    • COVID-19 Antibodies
    • COVID-19 Proteins
  • Services

    DNA-based NGS Services

    • Reduced Representation Bisulfite Sequencing (RRBS)
    • Whole Genome Bisulfite Sequencing (WGBS)
    • Targeted Bisulfite Sequencing

    Chromatin-based NGS Services

    • ChIP Sequencing (Histone Modifications)

    qPCR-based Services

    • Methylation-Specific qPCR (MSP)

    ELISA-based Services

    • Global DNA 5-mC Quantification
    • Global DNA 5-hmC Quantification
    • Global RNA 5-mC Quantification
    • Global RNA m6A Quantification
    • Histone Modification Quantification
  • Support

    Technical Support

    • Submit Support Ticket
    • Download Datasheet

    Quality Assurance

    • EpigenTek Guarantee
    • Risk-Free Testing: Pioneer Program
    • Product Review Program

    Resources

    • Epigenetics Newsletter
    • Intro to Epigenetics
    • What Is Epigenetics?
  • Corporate

    Company Information

    • About EpigenTek
    • Corporate Sustainability
    • Press Releases
    • Career Opportunities

    Procurement

    • Ordering Information
    • New Lab Startup Program
    • Distributors & Resellers

    Communication

    • Contact Us
    • Customer Feedback Survey
    • Events Calendar
 
EpiGentek Guarantee
   Home  »  Epigenetic Resources  »  Chromatin Remodeling and Unraveling the Histone Code 
    Quote Lookup

Chromatin Remodeling and Unraveling the Histone Code

A combination of histone modifications can directly impact gene expression by altering the state of chromatin.

Share:
Unraveling the histone code is of utmost importance to many epigenetic researchers as they begin to understand how the combination of histone amino-terminal modifications forms a pattern, or code, that influences gene expression and many chromatin-templated processes. Investigating this complex epigenetic marking system can reveal the far-reaching effects of histone modifications on cell fate and disease development. Through a process called chromatin remodeling, a protein-DNA complex is loosened or tightened, thereby opening or closing certain genes to transcription.

Chromatin Remodeling
Chromatin is a protein-DNA complex found in eukaryotes that contains all the genetic information of the organism. It is composed of DNA tightly wrapped around a histone octamer, or two copies of four histone proteins H2A, H2B, H3 and H4. This DNA-histone complex is called the nucleosome, and it allows all genetic information to fit into the nucleus of every eukaryotic cell. In order for the cell to express certain genes, the chromatin must be made accessible to transcription factors. Chromatin can be modified by epigenetic mechanisms like histone modifications during transcription in order to inhibit or express certain genes. This process is called chromatin remodeling.

Chromatin remodeling is a biological process that plays a leading role in gene expression, DNA repair, and apoptosis. The DNA is negatively charged due to the numerous negatively charged phosphates in the backbone. Conversely, histone proteins are positively charged, so the DNA and histone proteins are naturally able to wrap together.

It is hypothesized that the remodeling of chromatin is determined by the histone code, which is a heavily complex theory indicating that the combination of post-translational histone modifications directly affect genetic transcription and expression. The hypothesis implies that there is a blueprint made by specific enzymes that allow the addition or removal of methyl or acetyl groups to histones, or to identify domains on the histone to be epigenetically altered, ultimately altering gene expression.

The histone code is incredibly complex, considering there are 19 known lysines on histone H3 alone known to be methylated, and each can be unmethylated, monomethylated, dimethylated, or trimethylated. There are numerous other modifications including lysine acetylation, arginine methylation, threonine/serine/tyrosine phosphorylation on histone H3. Additional modifications occurring to other histone proteins also must be considered in the complexity of the histone code.

Epigenetic Enzymes
The histone modification enzymes involved in the histone code include HATs (histone acetyltransferase), HMTs (histone methyltransferase) and HDACs (histone deacetylase). These enzymes are able to add or remove epigenetic marks to the DNA in order to rearrange the chromatin from a less active condensed state (heterochromatin) to a more active looser state (euchromatin), or vice versa. This changes the accessibility of the chromatin to transcription factors or DNA binding proteins during transcription, resulting in the silencing or expression of genes.

HATs add an acetyl group to a histone lysine, which allows the nucleosome to unravel enough to ready the DNA for transcription. Acetyl groups are negative, so this will make their grip on DNA much looser. Similarly, histone phosphorylation will relax the chromatin structure due to the negative charge of the phosphate group.

HMTs add one, two, or three methyl groups to either a lysine or an arginine on a histone tail, which typically leads to gene silencing. The addition of methyl groups will normally make the negatively charged histones more hydrophobic, which leads the molecules to stick together, thereby tightening the grip on DNA.

HDACs are responsible for removing the acetyl groups, which reverses the work done by the HAT to loosen the chromatin. It is crucial for the histone modification process to be heavily regulated, because an imbalance in the acetylation/methylation equilibrium could lead to cancer development and progression of diseases.

See a PDF list of popular histone modifications, including histone methylation, acetylation, phosphorylation, ubiquitination, and SUMOylation.

For quantitative chromatin analysis and determination of euchromatin or heterochromatin states use the EpiQuik Chromatin Accessibility Assay Kit. This kit is ideal for gene-specific analysis of chromatin accessibility including nucleosome/transcription factor positioning from various biological samples via real time PCR.


Chromatin Remodeling and Pathological Development
Chromatin remodeling and histone modifications play a large part in disease development, particularly breast cancer development. Researchers at Cold Spring Harbor Labs identified the gene BPTF to be a chromatin-regulating protein present in the regulatory system of stem cells—particularly mammary stems cells. This gene is linked to the opening up of chromatin allowing for gene expression, which is crucial to the stem cell renewal process of bypassing the normal “stop signals” that mark the cell for death.

The researchers discovered that if the BPTF gene is turned off or removed, the stem cells could no longer renew themselves, and were permanently differentiated, meaning that they would also carry out the normal cell death process.1 This discovery could potentially be applied to cancer treatment since cancer cells share similarities in the ability to neglect the reproduction stop signs.

Understanding what leads to chromatin remodeling and what the histone patterns accomplish as part of the overall biological system and regulation of gene expression brings researchers closer to understanding the histone code. The implications for human biology and disease, including aging and cancer, are far-reaching.


References:
  1. Frey, Wesley D. et al., BPTF Maintains Chromatin Accessibility and the Self-Renewal Capacity of Mammary Gland Stem Cells. Stem Cell Reports, 9(1), 23-31.


See Also: Chromatin Analysis

Epigenetic Resources
  • Antibodies
  • DNA Methylation
  • RNA Methylation
  • Chromatin Remodeling
  • Histone Modifications
  • Gene Editing
  • Miscellaneous
BOGO-Conjugate Abs
Recent Resource Bulletins
  • Therapeutic Potential of m6A RNA Methylation
  • How CUT&RUN Helps Improve Methylated RNA Immunoprecipitation
  • Accessing Histone PTMs: Insights Into the Methods Used for Their Assessment
Featured Areas of Study
DNA, Protein, & Chromatin Preparation
DNA Methylation & Demethylation Analysis
Chromatin Immunoprecipitation
Histone Methylation & Demethylation
Histone Acetylation & Deacetylation
Gene Expression & Silencing
DNA Damage & Repair
Histone Phosphorylation
SUMOylation
Next-Generation Sequencing
Products & Services
Ordering Information & Return Policy
Epigenetic Services
Discounts & Promotions
Rewards Program
Product Reviews
New Lab Startup Program
Risk-Free Testing: Pioneer Program

Support
Download Datasheets
Epigentek Guarantee
Technical Support
Corporate
About Epigentek
Press Releases
Product Newsletter
Events Calendar
Distributors & Resellers
EpigenCare
Career Opportunities
Contact Us

Stay Informed



Terms & Conditions | Privacy Policy | Site Map
Copyright © 2019 EpiGentek Group Inc. All rights reserved.
  • Stay Informed:
Terms & Conditions | Privacy Policy Copyright © EpiGentek